L. S. Arutyunyan, É. Yu. Agababyan, and V. A. Mnatsakanyan

UDC 547,918:547.192

By preparative PC of the previously purified total iridoid material followed by chromatography on a column of silica, a new minor iridoid — verbascoside B (I) — has been isolated in the form of an amorphous substance with [α]_D —108 \pm 4 (c 0.12; methanol). The structure of (I), corresponding to 6- α -L-rhamnopyranosyldecinnamoylglobularinin, has been shown on the basis of a passage from 6- α -L-rhamnopyranosylcatalpol and the spectral characteristics of (I) and of its nanoacetate (II). Characteristics of the IR and ¹H and ¹³C spectra of (I) and (II) and of the mass spectrum of (II) are given.

Continuing a study of the iridoids of $Verbascum\ georgicum\ Benth.$ [1], we have isolated with the aid of preparative PC a fifth, unidentified, minor component of the total iridoid material of the plant, consisting of a new substance with the composition $C_{21}H_{34}O_{15}$, which we have called verbascoside B (I). On acetylation, the iridoid (I) forms a nonaacetate (II) in the IR spectrum of which there is the absorption band of a free hydroxy group, which shows the presence in (I) of a difficultly acetylatable tertiary hydroxy group. In the mass spectrum of (II), together with the ions that are characteristic for triactylrhamnose (m/z 273, 213, 171, 153, 129, 111) and for tetraacetylglucose (m/z 331, 271, 229, 169, 109), there are also the peaks of ions with m/z 614, 556, 284, 267 belonging to fragments formed by the detachment of carbohydrate fragments from the molecular ion. These facts permitted the assumption that verbascoside B (I) is a diglycoside the aglycone moiety of which consists of pentahydroxy compound.

The ¹³C NMR spectra of (I) and (II) confirm the validity of this hypothesis. In the spectrum of verbascoside B (I) with complete suppression of ¹H-¹³C coupling the signals of 21 carbon atoms are observed. The multiplicaties of the signals with incomplete ¹H-¹³C decoupling and a comparison with the spectrum of known iridoids [2, 3] permitted an unambiguous assignment of the signals to be made (Table 1) and the positions of the substituents in the aglycone moiety of the molecule of verbascoside B corresponding to structure (I) to be made.

A comparison of the ¹³C NMR spectra of verbascoside B (I) and that of a pair of iridoids stereoisomeric at C7 and C8 — globularinin (IV) and globularimin (V) — and their deacyl derivatives (VI) and (VII) [3] showed that (I) corresponds in structure to $6-\alpha$ -L-rhamnopyranosyldecinnamoylglobularinin, which has not been described previously.

The PMR spectra of verbascoside B and its nonaacetate (II) do not contradict their structures deduced on the basis of the results of ¹³C NMR spectroscopy and the alkaline hydrolysis of (III). The SSCCs for the protons at Cl, C5, C6, C7, and C9, determined on the basis of results of double-resonance experiments, also correlate with the proposed configurations of the centers of asymmetry by analogy with globularinin [4].

A. L. Mndzhoyan Institute of Fine Organic Chemistry, Academy of Sciences of the Armenian SSR, Erevan. Translated from Khimiya Prirodnykh Soedinenii, No. 5, pp. 573-576, September-October, 1983. Original article submitted September 27, 1982.

TABLE 1. ¹³C NMR Spectra (δ , ppm, relative to TMS)

Carbon		11	iV*	VI VI	٧	Ytt	
atom	(in CD,OD)	(iff CDCI)		in CD,OD			
C-1	96,10 d	94.44d	96,29	95,16	93,48	93.34	
C-3	141 .89 d	141,19d	14 .61	141,61	140,45	149,39	
C-4	106.05 d	103,38d	106,40	105,27	105,84	106 54	
C-5	37,19 d	35,95d	38,86	37,16	38,38	37,32	
C-6	83,10 d	78 33 d	78,63	78,34	83,76	83,14	
C-7	78.13 d	81.64d	78 63	79.34	85,38	86,42	
C-8	82,29 \$	79,34s	81,36	81,03	80,23	80,33	
C-9	44,13 d	43,04 d.	44.59	43,70	48,88	48 08	
C-10	67.14 tr	68,90 tr	69,01	66,37	66,41	64,29	
C 1'	100,67 d	97,42 d	100,87	99,20	99.68	99.55	
C-2'	74,63 d	70,67 d	74,35	74,61	74,44	74,61	
C-3'	<i>77.7</i> 6 d	. 72,41 d	77,78	77.99	77,59	77,94	
C-4'	71,23 d	67,61 d	70,83	70,39	71,07	71.54	
C-5'	76,85 d	72,16 d	77,43	78.34	77,59	77,71	
C-6'	62,35 tr	61,80 tr	62,23	62,42	62,45	62,70	
C-1"	100.77 d	97,58d	all differen	d New York	N. 50-80		
C-2"	72.04 d	69.3 d					
C-3"	70,11d	68,25 d					
C-4"	73,88 d	70,73d		5 6			
C-5"	72,28 d	67,14d			1		
C -6"	17,964	17,384			1		
CH ₃ CO-	-	20,34 q				게 노동됐	
-		20,37 q		1.	【1716年)		
ant Ele		20,67 (7) q		1			
CH3CO	<u>→</u> \	169.21 s					
		170,14(2)q			1	1 1 10	
	H. 314-50	170,68s				1	
10, \$2, \$2, \$3. \$3. \$4. \$4. \$4. \$4. \$4. \$4. \$4. \$4. \$4. \$4		170,76 (2)s					
200		170,98 (2)s		1	150	1	

*The results for (IV)-(VII) have been taken from the literature [4]; the signals of the cinnamoyl fragment are not given.

$$R^{2} = \begin{pmatrix} R^{2} & R^$$

EXPERIMENTAL

IR spectra were taken on a UR-20 instrument, NMR spectra on a Varian XL-200 instrument, and mass spectra on a MKh-1320 mass spectrometer, and optical activities were determined on a SM-1 instrument. Chromatography was carried out on type "C" ["medium"] paper (PC, in the butan-1-ol-acetic acid-water (4:1:5) system) and on Silufol 254 plates in the chloroformmethanol (30:1) system.

Verbascoside B (I). A mixture of fractions 1 and 2 (500 mg) obtained on the chromatography of the total iridoids of *Verbascum georgicum* Benth. [1] and consisting of a mixture of aucubin (R_f 0.50), catalpol (R_f 0.43), (III) (R_f 0.37), and a substance with R_f 0.30 (PC) were subjected to preparative chromatography three times on paper previously washed with methanol.

The substance with Rf 0.30 was additionally chromatographed on a column of silica gel (type KSK, 100/200 mesh) in the chloroform-methanol (1:1) system. This gave 14 mg of a substance with Rf 0.30 (I), $[\alpha]_{0}^{\frac{1}{2}}$ -108 ± 4° (c 0.12; methanol). PMR spectrum (in CD₃OD) (δ , ppm): 5.25 (1 H d, J_{1,0} = 6 Hz, Cl-H); 6.32 (1 H, dd, J_{4,5} = 6.5 Hz, J_{5,6} = 2 Hz, C3-H); 5.07 (1 H, dd, J_{4,5} = 6.5 Hz, J_{4,5} = 3 Hz, C4-H); 2.89-2.63 (1 H, m J_{5,6} = 10 Hz, J_{5,6} = 2 Hz, C5-H); 4.03 (1 H, dd, J_{5,6} = 2 Hz, J_{6,7} = 4 Hz, C6-H); 3.95 (1 H, d, J_{6,7} = 4 Hz, C7-H); 2.32 (1 H, dd, J_{9,5} = 10 Hz, J_{1,6} = 6 Hz, C9-H); 4.70 (1 H, d, J = 7.5 Hz, C1'-H); 4.03 (1 H, dd, C2'-H); 3.20-4.10 (11 H, m, C10-2H, C3'-H, C4'-H, C5'-H, C6'-H, C2''-H, C3''-H, C4''-H, C5''-H); 4.76 (1 H, d, J = 2 Hz, C1''-H); 1.22 (3 H, d, J = 2.5 Hz, C6''-3H).

Alkaline Hydrolysis of $6-\alpha$ -Rhamnopyranosylcatalpol. A solution of 240 mg of (III) in 5 ml of 10% caustic soda solution was heated in the boiling water bath for 24 h. The reaction mixture was cooled and transferred to a column of Sephadex LH-20 equilibrated with water. The substance was eluted from the column with 10 ml of water and the solution was evaporated. This gave 54 µg of (I).

Nonacetate of Verbascoside B (II). The acetylation of 50 mg of (I) by the usual method with a mixture of pyridine and acetic anhydride gave, after the purification of the product on a column of silica gel (in the chloroform-methanol (15:1) system), 55 mg of amorphous (II). R_f 0.28 (TLC). IR spectrum (CHCl₃): 1740-1770 cm⁻¹ (CH₃COO) 3480 cm⁻¹ (OH). PMR spectrum (in CDCl₃) 5.25 (1 H, d, $J_{1,9} = 6$ Hz, Cl—H); 6.31 (1 H, dd, $J_{3,4} = 6.5$ Hz, $J_{3,5} = 2.5$ Hz, C3—H); 4.95 (1 H, dd, $J_{4,9} = 6.5$ Hz, $J_{4,9} = 3$ Hz, C4—H); 2.70-2.83 (1 H, m, $J_{5,6} = 1.5$ Hz, $J_{9,5} = 10$ Hz, C5—H); 4.10 (1 H, dd, $J_{6,5} = 1.5$ Hz, $J_{6,7} = 4$ Hz, C6—H); 4.84 (1 H, d, $J_{7,6} = 4$ Hz, C7—H); 2.47 (1 H, dd, $J_{1,9} = 6$ Hz, $J_{9,5} = 10$ Hz, C9—H); 4.33 and 4.20 (1 H each, d, $J_{7,6} = 4$ Hz, C10—2H); 4.92 (1 H, d, $J_{7,6} = 4$ Hz, C1'—H); 5.14 (1 H, d, $J_{7,6} = 4$ Hz, C1'—H); 4.92-5.25 (6 H, m, C2'—H, C3'—H, C2'—H, C3'—H, C4'—H); 3.77 (1 H, m, C5'—H); 4.11-4.29 (2 H, m, C6'—2H); 3.91 (1 H, m, C5'—H); 1.22 (3 H, d, $J_{7,6} = 5.7$ Hz, C6'—H); 1.99-2.14 ppm (9 × 3 H, s, 9 CH₃CO). Mass spectrum, m/z (%) (molecular peak with m/z 904 absent): 614(1.6) (M⁺-290), 598(2.5), 556(2.7) (M⁺-17-331), 538(1), 331(100), 284(29) (M⁺-347-273), 273(70), 271(20), 267(17), (M⁺-290-347), 256(51), 242(22), 231(9), 229(9), 223(27), 213(25), 211(15), 205(20), 200(16), 185(24), 171(30), 169(97), 153(40), 149(50), 145(34), 137(29), 129(51), 127(30), 111(70), 109(66).

SUMMARY

A new minor component of the total iridoid material of *Verbaseum georgicum* Benth, has been isolated, and on the basis of passage from $6-\alpha-L$ -rhamnopyranosylcatalpol and ¹H and ¹³C NMR spectra its structure has been determined as $6-\alpha-L$ -rhamnopyranosyldecinnamoylglobularinin.

LITERATURE CITED

- 1. É. Yu. Agababyan, L. S. Arutyunyan, V. A. Mnatsakanyan, É. Gach-Baitts, and L. Padich, Khim. Prir. Soedin., 446 (1982).
- 2. R. K. Chaudhuri, F. U. Afifi-Yazar, O. Sticher, and T. Winkler, Tetrahedron, 36, No. 16, 2317 (1980).
- 3. A. Bianco, P. Caciola, M. Guiso, C. Iavarone, and C. Trogolo, Gazz. Chim. Ital., 111, 201 (1981).
- 4. R. K. Chaudhuri, and O. Sticher, Helv. Chim. Acta, 64, No. 1, 3 (1981).